Search results for " TRPA1"
showing 3 items of 3 documents
Involvement of cholinergic nicotinic receptors in the menthol-induced gastric relaxation.
2014
We have previously demonstrated that menthol reduces murine gastric tone in part through a neural mechanism, involving adrenergic pathways and reduction of ongoing release of acetylcholine from enteric nerves. In the present study we aimed to verify whether the gastric relaxation to menthol may be triggered by interaction with neural receptors or ionic channels proteins, such as transient receptor potential (TRP)-melastatin8 (TRPM8), TRP-ankyrin 1 (TRPA1), 5-hydroxytriptamine 3 (5-HT3) receptor or cholinergic nicotinic receptors. Spontaneous mechanical activity was detected in vitro as changes in intraluminal pressure from isolated mouse stomach. Menthol (0.3-30 mM) induced gastric relaxati…
Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
2020
AbstractThere are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of …
TRPA1 channel is a cardiac target of mIGF-1/SIRT1 signaling.
2014
Cardiac overexpression of locally acting muscle-restricted (m)IGF-1 and the consequent downstream activation of NAD+-dependent protein deacetylase sirtuin 1 (SIRT1) trigger potent cardiac antioxidative and antihypertrophic effects. Transient receptor potential (TRP) cation channel A1 (TRPA1) belongs to the TRP ion channel family of molecular detectors of thermal and chemical stimuli that activate sensory neurons to produce pain. Recently, it has been shown that TRPA1 activity influences blood pressure, but the significance of TRPA1 in the cardiovascular system remains elusive. In the present work, using genomic screening in mouse hearts, we found that TRPA1 is a target of mIGF-1/SIRT1 sign…